Journals

MY SCIENTIFIC RECOGNITION

Publication

Image

2D Materials for Energy Generation & Storage

  1. "Ion-Exchanging Graphenic Nanochannels for Macroscopic Osmotic Energy Harvesting", A. Nagar, Md R. Islam, K. Joshua, T. Gupte, S. K. Jana, S. Manna, T. Thomas, T. Pradeep, ACS Sustainable Chemistry and Engineering, 2022, 10, 46, 15082–15093. DOI: https://doi.org/10.1021/acssuschemeng.2c04138.
  2. “2D-Molybdenum Disulfide-Derived Ion Source for Mass Spectrometry”, P. Basuri, S.  K. Jana, B. Mondal, T. Ahuja, K. Unni, Md R. Islam, S. Das, J. Chakrabarti, T. Pradeep, ACS Nano, 2021, 15, 5023–5031. DOI: https://doi.org/10.1021/acsnano.0c09985.
  3. Ionic liquid intercalated metallic MoS2 as a superior electrode for energy storage applications”, H. R. Inta, T. Biswas, S. Ghosh, R. Kumar, S. K. Jana, V. Mahalingam, ChemNanoMat, 2020, 6 (4), 685-695. DOI: https://doi.org/10.1002/cnma.202000005.
  4. “Electrospray deposition-induced ambient phase transition in copper sulphide nanostructures”, A. Jana, S. K. Jana, D. Sarkar, T. Ahuja, P. Basuri, B. Mondal, S. Bose, J. Ghosh, and T. Pradeep, Journal Materials Chemistry A, 2019, 7 6387. DOI: https://doi.org/10.1002/cnma.202000005. (This article is part of the themed collection: 2019 Journal of Materials Chemistry A HOT Papers)
  5. “Rectification and amplification of ionic current in graphene/graphene oxide junction: An electrochemical diode and transistor”, S. K. Jana*, S. Banerjee, S. Bayan, H. R. Inta, and V. Mahalingam, J. Phys. Chem. C, 2018, 122 (21), pp 11378–11384. DOI: https://doi.org/10.1021/acs.jpcc.8b01717.  This article was highlighted in Nature India, https://www.nature.com/articles/nindia.2018.124.
  6. “Ligand sensitized strong luminescence from Eu3+-doped LiYF4 nanocrystals: A photon downshifting strategy to improve the Si solar cell efficiency”, T. Samanta, S. K. Jana, Athma E. P, V. Mahalingam, Dalton Transaction, 2017, 46,9646-9653. DOI: https://doi.org/10.1039/C7DT01339F.
  7. “Structural and electrochemical analysis of a novel co-electrodeposited Mn2O3–Au nanocomposite thin film”, S. K. Jana*, B. Saha, B. Satpati, S. Banerjee, Dalton Transactions, Vol.44 (2015), 9158-9169. DOI: https://doi.org/10.1039/C5DT01025J.
  8. “Enhancement of supercapacitance property of electrochemically deposited MnO2 thin films grown in acidic medium” S. K. Jana*, V. P. Rao and S. Banerjee, Chemical Physics Letters, Vol. 593 (2014) 160-164. DOI: https://doi.org/10.1016/j.cplett.2014.01.008.
  9. “Optimized luminescence properties of Mn doped ZnS nanoparticles for photovoltaic applications”, A. Le. Donne, S. K. Jana, S. Banerjee, S. Basu, and S. Binetti, Journal of Applied Physics, Vol. 113: 014903-5 (2013). DOI: https://doi.org/10.1063/1.4772668.
  10. “Enhancement of silicon solar cell performances due to light trapping by colloidal metal nanoparticles”, S. K. Jana, A. L. Donne and S. Binetti, Journal of Physics and Chemistry of Solids, Vol. 73(2): 143-147, (2012). DOI: https://doi.org/10.1016/j.jpcs.2011.11.025.
  11. “Study of Electrochemical Reduced Graphene Oxide and MnO2 Heterostructure for Supercapacitor Application”, S. K. Jana, V. P. Rao and S. Banerjee, AIP Conf. Proc., 1512, 516 (2013). DOI: https://doi.org/10.1063/1.4791138

Read More
Image

Nanomaterials for Optoelectronics

  1. “Holey MoS2 Nanosheets with Photocatalytic Metal Rich Edges by Ambient Electrospray  Deposition for Solar Water Disinfection”, D. Sarkar, B. Mondal, A. Som, Swathi J. R., S. K. Jana, C. K. Manju, T. Pradeep, Global Challenges (Wiley) 2018, 2, 1800052 (2-8). DOI: https://doi.org/10.1002/gch2.201800052. (This article was considered as the  Front Cover Page of the journal,  https://onlinelibrary.wiley.com/doi/10.1002/gch2.201870224.
  2. “Electrospray deposition-induced ambient phase transition in copper sulphide nanostructures”, A. Jana, S. K. Jana, D. Sarkar, T. Ahuja, P. Basuri, B. Mondal, S. Bose, J. Ghosh and T. Pradeep, Journal Materials Chemistry A, 2019, 7 6387. DOI: https://doi.org/10.1039/C9TA00003H. (This article is part of the themed collection: 2019 Journal of Materials Chemistry A HOT Papers).
  3. “Ligand sensitized strong luminescence from Eu3+-doped LiYF4 nanocrystals: A photon downshifting strategy to improve the Si solar cell efficiency”, T. Samanta, S. K. Jana, Athma E. P, V. Mahalingam, Dalton Transaction, 2017, 46,9646-9653. DOI: https://doi.org/10.1039/C7DT01339F
     
  4. “Fluorescence resonance energy transfer and surface plasmon resonance induced enhanced photoluminescence and photoconductivity property of Au-TiO2 metal-semiconductor nanocomposite”, S. Majumder, S. K. Jana*, K. Bagani, B. Satpati, S. Kumar, and S. Banerjee, Optical Materials , Vol. 40 (2015) 97-101. DOI: https://doi.org/10.1016/j.optmat.2014.12.001. 
  5. “Enhancement of photoluminescence emission and anomalous photoconductivity properties of Fe 3 O 4@ SiO 2 core–shell microspheres”, S. K Jana*, S. Majumder, S. Mishra, S. Banerjee, RSC Advances, Vol. 5 (2015), 37729-37736. DOI: https://doi.org/10.1039/C5RA03686K.
  6. “Enhanced photoelectrochemical property of gold nanoparticle sensitized TiO2 nanotube: A crucial investigation at electrode-electrolyte interface”, S. K. Jana*, T. Majumder and S. Banerjee, Journal of Electroanalytical Chemistry, 727 (2014) 99–103. DOI: https://doi.org/10.1016/j.jelechem.2014.05.030.
  7. “Enhancement of Photoelectrochemical Properties of TiO2 Nanotube Loaded With Gold Nanoparticles”, S. K. Jana, T. Majumder, S. Majumder and S. Banerjee, AIP Conf. Proc., 1536, 109 (2013). DOI: https://doi.org/10.1063/1.4810124.

 

Read More
Image

Sensors (Solid state, Electrochemical, Wearable)

  1. “Vertically Aligned Nanoplates of Atomically Precise Co6S8 Cluster for Practical Arsenic Sensing”, A. Jose, A. Jana, T. Gupte, A. S. Nair, K. Unni, A. Nagar, A. R. Kini, B. K. Spoorthi, S. K. Jana, B. Pathak, and T. Pradeep, ACS Materials Lett. 2023, 5, 3, 893–899. DOI: https://doi.org/10.1021/acsmaterialslett.3c00085.
  2. “Toward Continuous Breath Monitoring on a Mobile Phone Using a Frugal Conducting Cloth-Based Smart Mask”, P. Srikrishnarka, R. M. Dasi, S. K. Jana, T. Ahuja, J. S. Kumar, A. Nagar, A. R. Kini, B. George, and T. Pradeep, ACS Omega , 2022, 7, 47, 42926–42938. DOI: https://doi.org/10.1021/acsmaterialslett.3c00085.
  3. “A Selective and Practical Graphene-based Arsenite Sensor at 10 ppb”, S. K Jana, K. Chaudhari, Md R. Islam, G. Natarajan, T. Ahuja, A. Som, G. Paramasivam, A Raghavendra, C. Sudhakar, T. Pradeep, ACS Appl. Nano Mater. 2022, 5, 8, 11876–11888. DOI: https://doi.org/10.1021/acsanm.2c02860.
  4. “Arsenic toxicity: Carbonate’s Counteraction Revealed”, S. J. Ravindran, S. K Jenifer, J. Balasubramanyam, S. K. Jana, S, Krishnakumar, S. Elchuri, L. Philip, T. Pradeep, ACS Sustainable Chemistry & Engineering, 2020, 8, 5067-5075. DOI: https://doi.org/10.1021/acssuschemeng.9b06850.
  5. “Enhancing the sensitivity of point-of-use electrochemical microfluidic sensors by ion concentration polarisation – A case study on arsenic”, V. Subramanian, S. Lee, S. Jena, S. K. Jana, D. Ray, S. J. Kim, T. Pradeep, Sensors and Actuators B: Chemical, 2020, 304, 127340-8. DOI: https://doi.org/10.1016/j.snb.2019.127340.
  6. “Highly-sensitive As3+ detection using electrodeposited nanostructured MnOx and phase evolution of the active material during sensing”, T. Gupte, S. K. Jana, J. Mohanty, P. Srikrishnarka, S. Mukherjee, T. Ahuja, C. Sudhakar, T. Thomas, T. Pradeep, ACS Applied Materials & Interfaces, 2019, 11, 28154-28163. DOI: https://doi.org/10.1021/acsami.9b06023.
  7. “Surface-Treated Nanofibers as High Current Yielding Breath Humidity Sensors for Wearable Electronics”, S. A. Iyengar, P. Srikrishnarka, S. K. Jana, M. R. Islam, T. Ahuja, J. S. Mohanty, and T. Pradeep, ACS Appl. Electron. Mater. 2019, 1, 951−960. DOI: https://doi.org/10.1021/acsaelm.9b00123
  8. “An alternative electron transfer process for selective detection of glucose in blood serum”, B. Saha, S. K. Jana*, S. Majumder, S. Banerjee, Sensors and Actuators B: Chemical, 2019, 283, 116-123. DOI: https://doi.org/10.1016/j.snb.2018.11.154.
  9. “Selective Growth of Co-electrodeposited Mn2O3-Au Spherical Composite Network towards Enhanced Non-enzymatic Hydrogen Peroxide Sensing”, B. Saha, S. K. Jana*, S. Majumder, B. Satpati and S. Banerjee*, Electrochimica Acta, Vol. 174, 853-863, 2015. DOI: https://doi.org/10.1016/j.electacta.2015.06.067.
  10. “3D dendritic α-Fe2O3 nano-architectures: Synthesis and its application on electrochemical non-enzymatic H2O2 sensing”, Sumit Majumder, Barnamala Saha, Subhrajyoti Dey, Kousik Bagani, Mayukh Kumar Roy, Sourav Kanti Jana, Sanjay Kumar, Sangam Banerjee, AIP Conf. Proc., 1665 (2015), 50117 (2 pages). DOI: https://doi.org/10.1063/1.4917758
  11. Electrodeposited nanostructured MnO2 for non-enzymatic hydrogen peroxide sensing”, Barnamala Saha, Sourav Kanti Jana, Sangam Banerjee, AIP Conf. Proc., 1665 (2015), 50097 (2 pages). DOI: https://doi.org/10.1063/1.4917738.
  12. “Schottky Junction Methane Sensors Using Electrochemically Grown Nanocrystalline- Nanoporous ZnO Thin Films” P. K. Basu, N. Saha, S. K. Jana, H. Saha, A. Lloyd Spetz, and S. Basu, Research article Hindawi Publishing Corporation, Journal of Sensors, Vol. 2009, (2009). DOI: https://doi.org/10.1155/2009/790476.
  13. “Low temperature Methane Sensing by Electrochemically Grown Pd modified Zinc Oxide”, P.K Basu, S. K. Jana, H. Saha and S. Basu, Sensors and Actuators B, Vol. 135: 81–88, (2008). DOI: https://doi.org/10.1016/j.snb.2008.07.021.
  14. Low-temperature hydrogen gas sensors based on electrochemically deposited and surface modified nanoporous ZnO thin films”, P. K. Basu, S. K. Jana, M. K. Mitra, H. Saha and S. Basu, Sensor Letters, American Scientific Publishers (ASP), Vol. 6(5): 699-704, (2008). DOI: https://doi.org/10.1166/sl.2008.m106.

Read More
Image

Capacitive Deionization

  1. Industrial Utilization of Capacitive Deionization Technology for the Removal of Fluoride and Toxic Metal Ions (As3+/5+ and Pb2+)”, Md. R. Islam, S. S. Gupta, S. K. Jana, T. Pradeep, Global Challenges, 2022, 6, 2100129. DOI: https://doi.org/10.1002/gch2.202100129.
  2. “A covalently integrated reduced graphene oxide-ion exchange resin electrode for efficient capacitive deionization”, Md R. Islam, S. Sen Gupta, S. K. Jana, P. Srikrishnarka, B. Mondal, S. Chennu, T. Ahuja, A. Chakraborty, T. Pradeep*, Advanced Materials Interfaces, 2021, 8, 2001998. DOI: https://doi.org/10.1002/admi.202001998.

Read More
Image

Paper Electrochemistry

  1. “2D-Molybdenum Disulfide-Derived Ion Source for Mass Spectrometry”, P. Basuri, S.  K. Jana, B. Mondal, T. Ahuja, K. Unni, Md R. Islam, S. Das, J. Chakrabarti, T. Pradeep, ACS Nano, 2021, 15, 5023–5031. DOI: https://doi.org/10.1021/acsnano.0c09985.
  2. “Microdroplet impact-induced spray ionization mass spectrometry (MISI MS) for online reaction monitoring and bacteria discrimination”, P. Basuri, S. Das, S. K. Jenifer, S. K. Jana, Thalappil Pradeep, Journal of the American Society for Mass Spectrometry, 2021, 32, 355-363. DOI: https://doi.org/10.1021/jasms.0c00365.
  3. “In-situ Monitoring of Electrochemical Reactions Through CNTs-assisted Paper Cell Mass Spectrometry”, R. Narayan, P. Basuri, S. K. Jana, A. Mahendranath, S. Bose, T. Pradeep, Analyst, 2019, 144, 5404-5412. DOI: https://doi.org/10.1039/C9AN00791A
     

 

Read More